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Pinning of cracks in two-dimensional disordered media
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Abstract. We study the statistics of crack pinning in two dimensions by experiments and simulations of di-
rected polymers in random media. Mode I tensile tests on paper samples show a delocalization phenomenon
as the notch length is varied if the fraction of cracks pinned to the notch is monitored. This is compared
with the behavior of directed polymers in the presence of both an energetically favorable localized pinning
center and bulk disorder. An analysis of the crack interface roughness indicates self-affine behavior with a
roughness exponent ζ in the proximity of the minimum energy surface value 2/3.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 62.20.Fe Deformation and plasticity (including
yield, ductility, and superplasticity) – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 81.40.Np Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure

1 Introduction

Recent experiments have shown that novel aspects of frac-
ture phenomena, in particular in disordered media, tran-
spire if one uses the language of statistical mechanics [1,2].
Two main new ideas have been encountered. The first issue
has been the growth and formation of cracks and in general
questions related to extensive properties like the tensile
strength. Secondly, the a posteriori properties of fracture
surfaces have attracted much interest [1,3]. The geomet-
ric characterization of fractures has resulted in a multi-
tude of evidence for non-trivial self-affine scaling though
the details vary greatly. The properties of crack surfaces
could be assumed to depend on the dynamics of crack for-
mation. Of particular interest is the connection to stan-
dard depinning phenomenology, which might be relevant
in the case in which the crack is formed slowly with elastic
energy release competing with microstructural and other
randomness [4]. This establishes a connection between the
physics of driven elastic lines in random media and the
propagation of cracks and helps to introduce to fracture
the standard plethora of scaling exponents [5]. In this way
many fracture mechanics problems can just be considered
in standard terms of driven interfaces, complicated due
to the long-range nature of the elastic forces. In a disor-
dered material the competition of elasticity with the inho-
mogeneities in the material leads to generic scaling laws.
Close to a depinning transition one would observe a power-
law dependency of the crack velocity on the drive force,
and possibly self-affine rough cracks whose roughness is in
three dimensions characterized by a set of roughness ex-
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ponents – in-plane, out-of-plane – with possibly different
values in the two independent directions.

However, such a clear picture is according to current
understanding not in agreement with how disorder and
dimensionality affect fracture processes. For three dimen-
sional fracture, it has been demonstrated that crack inter-
faces obey at long enough lengthscales self-affine scaling,
with a roughness (Hurst) exponent ζ close to 0.8 [1]. For
small scales the exponent seems to be around 0.5. These
values are difficult to explain by the phenomenology of
driven lines in random media. In two dimensions the sit-
uation is for reasons not yet understood different, in that
both experiments on slow, tensile failure of paper sheets
and on a quasi-2D system lead to ζ ' 0.6−0.7 [6,7].

The implications of having in 2D such a super-diffusive
roughness exponent (it is larger than the random walk
value of 1/2) are interesting since the actual quotes for
ζ are close to the directed polymer (DP) in a random
medium or minimum energy surface exponent, ζdp =
2/3 [8]. It is unclear how exactly a pinning cluster or
a minimum energy surface (corresponding to a directed
polymer) maps to a fracture surface but numerical evi-
dence exists that 2D slow crack growth is in the DP uni-
versality class [9,10]. In the case of perfect (scalar) plastic-
ity the corresponding random fuse network (RFN) model
possesses a blocking property. In a ductile medium the
global yield point is reached once an intersecting surface
is formed that blocks any further increases in stress (cur-
rent in a scalar approximation). This surface is exactly
equivalent to a random bond Ising domain wall, which is
in the DP universality class. Recent computer simulations
by Räisänen et al. indicate this to be true also for brit-
tle failure, and thus perhaps also for the whole continuum
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for scalar models ranging from brittle to perfectly plastic
behavior [9,10].

In this paper we extend the analogy of directed poly-
mers and fracture problems by studying the failure of sys-
tems with prepared defects or notches. Consider a random
bond Ising domain wall (DW), e.g. in a L×L-system with
antiperiodic boundary conditions (spins fixed up/down at
opposite ends). Recall that this is equivalent to a per-
fectly ductile material. The Hamiltonian of the interface
is given by

H = −
∑
nn′

Jnn′σnσ
′
n, (1)

where the sum is over nearest-neighbor spin pairs and the
Jnn′ are positive semidefinite random variables with a sen-
sible distribution (finite first and second moments). The
interface energy is minimized at zero temperature by the
DW configuration that chooses the global optimum by uti-
lizing small coupling constants and by not expending en-
ergy by increasing the total DW length too much. What
happens in this case if one sets the bonds Jxy to zero at
one end (x = L/2, y ≤ a)?

This pinning defect should correspond in fracture me-
chanics language to a notch. The first question to ask is:
when is the strength of the defect strong enough to lo-
calize the interface/crack so that it passes through the
defect given a fixed system size L? This question will be
studied in the following experimentally by tensile tests
on notched 2D paper samples with varying notch lengths.
These are compared to simulations of directed polymers
in a set-up as above with bulk disorder and a defect. One
should of course keep in mind that such a scalar and per-
fectly plastic model lacks some features of real materials.
The ‘order parameter’ used in this work is the probabil-
ity for the interface to pass through the notch, f . Out of
the simulations and the experiments seems to emerge a
‘delocalization transition’ as the scaling parameter a/L is
varied. Recall that the defect is finite and thus a sensible
limit for finite size scaling consists of a/L→ const. This is
since the problem of a DP with a finite defect is related to
the question of DP’s interacting with extended defects. It
is known that in 2D an arbitrarily weak bulk line defect is
relevant and localizes the interface (see [11] and also [8]).
What corresponds to this in our problem is the above limit
of a constant pin length/system size ratio.

The rest of the paper is structured so that Section 2
discusses the problem and the scaling of the fraction of
pinned cracks in the light of the directed polymer analogy
and computer simulations. Section 3 presents the exper-
imental details and the data for both crack pinning and
the roughness of final crack interfaces. Section 4 finishes
the paper with conclusions.

2 Directed polymers and localized defects

Consider the Ising domain wall problem starting from
equation (1). Define the function f(a/L) as the fraction
of interfaces going through the defect. Figure 1 shows the
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Fig. 1. f vs. L from simulations as a function of system
size and notch/defect length a. The system size L increases
from right-to-left, L = 100, 200, 300, 400 (square geometry).
Typically 200 samples per datapoint in the numerics.

behavior of f with system size. We use in the numerics
a combinatorial optimization technique, which allows a
convenient way of finding minimum energy surfaces with
boundary conditions that allow for free starting and end
points for the interface [12]. The systems have square ge-
ometry and the bulk disorder used is given by a constant
bond probability distribution [1 − ∆J ≤ J ≤ 1 + ∆J ].
With increasing L, f approaches a linear function of a ex-
cept for close to zero and unity, respectively. The slope is
proportional to the system size L.

In the limits f → 1 and f → 0 the scaling behav-
ior is less trivial than in the linear regime seen in Fig-
ure 1. For the linear part, one can however use simple
scaling arguments. For an arbitrary starting point (x, y)
for the DP the interface energy can be written in the form
gx,y(δE)(L − x), x � L, where of the arguments the
x-coordinate is in the direction along the notch and the
y-coordinate is the perpendicular one. g measures
the mean effect of the actual initial condition on the DP
energy while δE is the average DP energy per unit length.
If one now adds a zero-energy defect of length a to the
original system, f(a) ' 0.5 corresponds to a crossover
value ac for the crack length. This can be found by con-
sidering the two candidate energies for the minimum path:
∆E1 = g1,yL and ∆E2 = (L− ac)ga,L/2. ga,L/2 takes into
account that the energy of the path constrained to pass
through the notch should be larger than that of the un-
constrained one. The crack is as likely to be unpinned
as pinned when the energy lost by using the minimum
path of the pure system is typically as large as that of
the minimum path using the defect, i.e. ∆E1 = ∆E2.
The competition of the bulk disorder and the defect with
varying defect strength can be compared by expanding
g ∼ 1−∆Jg′x,y where g′ is to the first order constant in
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Fig. 2. The critical defect size ac from simulations with L =
200 as a function of disorder strength ∆J = 0.5.

x and determined solely by y. Trivial algebra gives

ac =
∆J(g′y − g′L/2)

1−∆Jg′L/2
L. (2)

For ∆J small the cross-over lengthscale is thus linear in
∆J ; this is compared with simulations in Figure 2. The
tails of f close to pinning and complete depinning are dif-
ficult to argue about since one needs to take into account
that the minimum energy of ‘through the notch’ cracks in
a sample will both depend on the actual minimum energy
without the notch E0 as well as the interface configura-
tion corresponding to that. Since the tails of DP energy
distribution functions are (within the accuracy we are con-
cerned with) Gaussian a rough estimate would be about
the limit f → 1 that 1− f would be Gaussian as well. For
f → 0 one can not assume that the global minimum and
the one emanating from the defect are well-separated in
space.

Figure 3 shows the average interface energy in three
different ways: vs. a, and, separately, the averages for
pinned and unpinned samples. They are all normalized
with the average interface energy without a defect. There
are two things to note: first, the samples in which the in-
terface utilized the defect are on average weaker (energy
per unit length smaller) than those with the same defect
size/strength but without the interface passing through
the defect. Second, the average energy for the unpinned
cases decreases with a/L. The latter fact makes possible
a qualitative explanation of the first observation. There
is a certain fraction of samples in which any interface
path that uses the defect is energetically very unfavourable
(ga,L/2 large). In such cases the actual global minimum is
more likely to win the competition. The energy – given
the added constraint – of such systems is larger on the
average, but of course decreases as well with increasing
a/L.
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Fig. 3. Directed polymer energy E(a) vs. defect size a nor-
malized with the energy of the system with no defect E(0).
The circles denote the average computed over systems in which
the defect is included in the surface, and the squares those in
which it is avoided. The line denotes the total average E(a).
∆J = 0.5, thus ac/L = 0.017, L = 200.

3 Experimental results

3.1 Crack pinning

Ordinary paper is inhomogeneous, which can be affirmed
with the naked eye. This unevenness arises from both sim-
ple variations in the local mass (flocs, basis weight fluc-
tuations) and in the local mechanical properties as failure
strain or elastic modulus. The role of these fluctuations
in the strength properties is an open question. Experi-
mental observations indicate that the local strength is not
directly proportional to the local basis weight (mass per
unit area). As in any engineering material the disorder
present gives rise to complications. At the simplest level
weak-link statistics plays a role in determining the ten-
sile strength of samples: the larger the sample, the lower
its strength due to variations of the local strength locally.
The inhomogeneity at the structural level could become
visible in the variation/probability distribution of the ten-
sile strength. Broadly speaking the more inhomogeneous
the local structure, the wider the spread in the tensile
strengths would be.

The issue of the role of the defects/unevenness of struc-
ture has previously been noted in paper physics litera-
ture [13,14]. One can attempt to account for the structural
aspects by adding a material-specific correction to the ef-
fective linear-elastic fracture mechanics crack size, δas to
come up with a modified Griffith’s equation [14]. A side
product of the analysis is that one can define an effective
disorder-induced crack size. E.g., one concept is to use the
size of a notch that will have 50% of the cracks passing
through it ac, in our language such that f(ac) ' 0.5.

The experiments are done with two paper grades:
newsprint and copy paper of 45 and 70 g/m2 basis
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Fig. 4. Typical stress-strain curves of the paper grades used.
The solid curve: newsprint in the machine-direction (MD), the
dashed curve: newsprint in the cross-direction (CD), see the
text.

weight, respectively. Figure 4 shows the typical stress-
strain curves of unnotched samples of newsprint and
demonstrates that the paper grades vary in their relative
ductility. One issue to note is that both variants are of
industrial origin and thus display an anisotropy (in the
so-called Machine and Cross Directions, MD/CD) in elas-
tic modulus, strength and strain to failure etc. The grades
considered here are the most ductile if strained in the CD.

Notches of varying length were cut on the edges of
100 × 100 mm test samples. The edge cut lengths were
measured afterwards by using a microscope to a 0.05 mm
accuracy. The effective accuracy of the notch length is
0.2 mm. The tensile tests were carried out with a standard
Alwetron tensile testing machine at the Paper Technology
laboratory of Helsinki University of Technology. The sam-
ples – 50 for each notch length – were stored at constant
temperature and humidity to avoid viscoelastic changes
which might change the effective ductility of the mate-
rial over the test period. Each sample was subjected to a
constant strain rate of 1% per minute tensile test.

Figure 5 shows f(a/L) for one of the paper grades. The
slope of f in the linear regime turns out to be larger for
the ductile copy paper. This might be due to less inherent
disorder. From the data one can estimate the defect size
a at which f becomes effectively zero. This turns out to
be of the order of 0.7–0.8 mm for all cases except for MD
copy paper for which the a may be smaller, close to zero.
The disorder-induced crack size ac is of the order of 1.1
to 1.3 mm depending on the paper grade (copy paper or
newsprint, respectively) but not depending on the orien-
tation. Thus (see Fig. 4) the macroscopic ductility of the
samples in the direction of strain seems to play no great
role in the magnitude of ac.

The strength of the samples was found to decrease
roughly linearly as a function of a/L. Despite the lim-
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Fig. 5. The experimental f , pinning fraction vs. the notch
length normalized with system size a/L. The disorder scale
ac/L is about 0.013. The error bars denote the experimental
scattering in the notch length and in the f . The data pre-
sented is for two separate datasets for copy paper in the CD
(more ductile) direction (circles: paper stored in room condi-
tions, squares: paper stored in constant temperature and rela-
tive humidity to avoid aging).

ited statistics one can gain extra information of the two
populations (pinned/depinned) by comparing the relative
strengths when f ∼ 0.5. Analogous to the simulations the
strength of the pinned samples is lower than of the de-
pinned ones (at a 95% confidence level). It must be emp-
hazised that the comparison would be well-defined only for
a very ductile material; for brittle ones the failure stress
may or may not have any direct relation to the average
interface energy.

3.2 Fractureline analysis

To explore further the analogy between minimum energy
surfaces and the cracks we analyzed the crack roughness
of a subset of the tensile test samples. The CD copy paper
data was used with the mean notch length value of 27 mm.
Five (samples 1–5) of the ten fracturelines did not include
the initial notch and the other five (samples 6–10) included
the notch, i.e. the notch length was chosen so as to imply
f ∼ 0.5, a ' ac.

The strips were scanned with 600 dpi tablescanner.
The power of reflected light was digitized using 256 gray
levels. Unfortunately the grayscale range was set so that
images actually contain only 62–64 distinct gray levels.
The characteristic image size is 2350× 500 pixels.

The fracturelines were detected by thresholding the
image. The thresholding graylevel varied between sam-
ples. The threshold value was determinated by fitting one
Gaussian distribution to 0-128-part of graylevel histogram
and another Gaussian distribution to 128-256-part. The
threshold value is the graylevel that has the equal proba-
bility to belong to both of the distributions.
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Table 1. Effective roughness exponent ζ values from crack surface analysis of the experimental data with a ∼ ac, f ∼ 0.5 (see
text). measurements.

Method Excluding notch (1–5) Including notch (6–10)
Mean Var. Mean Var.

Return prob. 0.84 0.03 0.80 0.02
zmax 0.70 0.006 0.66 0.009
Width 0.62 0.01 0.53 0.003
Width trend removed 0.57 0.02 0.51 0.006

The fracturelines were solid-on-solid -conditioned and
steps greater than 1 mm were removed. Since the sam-
ple dimensions were small and the test method obviously
preferred one crack propagation direction the global lin-
ear trend was not removed. To demonstrate the effect of
trend removal the standard deviation method was applied
to both the original and detrended fractureline. We used
several test methods for the crack roughness analysis: lo-
cal width, maximum deviation (‘zmax’), first return prob-
ability and Fourier-analysis. These all should result in the
same roughness exponent ζ if the crack surfaces are truly
self-affine.

The fracturelines were analyzed using the three meth-
ods. All these show that the fractureline becomes slightly
rougher if the fractureline does not include the initial
notch (Tab. 1); note that for DP’s with a linear defect
this would be trivially the case. It seems that the varia-
tion of roughness exponent is higher in those samples that
included the initial notch.

The exponent values obtained are in spite of their large
relative variation in rough agreement with two assump-
tions: 1) the crack surfaces are self-affine and 2) that the
roughness exponent should be of the order of 2/3, as for
directed polymers.

4 Conclusions

In this paper we have compared the behavior in slow frac-
ture of disordered two-dimensional media and the physics
of minimum energy surfaces. To this end, we have de-
fined an order parameter f describing the mean fraction of
samples in which the crack or the directed polymer passes
through the crack. From the fracture mechanics viewpoint,
f(a) describes the ‘intrinsic’ disorder in the material in a
semi-quantitative way whereas for minimum energy sur-
faces it can be related to the behavior in the presence of
a defect of finite extent.

Both from the experiments and the DP simulations a
similar picture emerges: there is a regime in which f(a)
is roughly linear in a, and one may extract a ‘typical de-
fect size’ from this as the notch/defect size ac at which f
extrapolates to zero. For the particular case studied here,
ordinary paper of industrial manufacture this lengthscale
is of the order of 0.5 mm, and in other words non-zero.
As pointed out in reference [14], a length scale like ac can
perhaps be considered to related to the ‘plastic zone cor-
rection’ of linear elastic fracture mechanics of materials
which exhibit plasticity in the fracture process zone. This

means simply that for such materials the expression for
the critical stress σc ∼ 1/

√
a+ δa where δa is the length-

scale of microscopic plasticity, the implication in our case
being that δa ∼ ac. Thus the larger the ac, the tougher
would be the material. Note also the scenario presented in
Figure 3: the tendency to not pin to the defect is related
to the lack of any ‘easy’ paths that could be accessed.
The roughness analysis of the cracks for a case in which
f ∼ 0.5 results in exponents that are not in obvious dis-
agreement with a minimum energy surface-like behavior
(ζ being of the order of 0.6...0.7). Finally we mention some
future prospects: the idea of the paper can be naturally ex-
tended to three dimensions, where a 2D crack plane would
interact with a 2D notch. It would be also interesting to
investigate systematically the ‘scaling limit’ of a constant
a/L-ratio.

We thank the Laboratory of Paper Technology, HUT for access
to the tensile testing laboratory and the Academy of Finland
for support within its Center of Excellence-program.
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9. V.I. Räisänen et al., Phys. Rev. Lett. 80, 329 (1998).
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